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DESIGN AND FABRICATION OF

AN AEROELASTIC FLAP ELEMENT

FOR A SHORT TAKEOFF AND LANDING

(STOL) AIRCRAFT MOI)EL

By (;. W. Belleman and R. R. June

SUMMARY

A flap element typifying a third flap element of a short takeoff almd landing (STOL) airplane
was designed and fabricated. The purpose of this program was to provide NASA with a
representative aircraft part which could be evaluated by flight-simulated tests. The tests are
expected to provide an insight to the loading and dynamic response of an airfoil section subjected
to a flight airstream and jet engine exhaust impingement.

INTRODUCTION

The externally blown flap concept being considered in preliminary designs of a short takeoff
and landing aircraft uses special high-lift devices to decrease runway requirements. One element
which is critical to the successful operation of this concept is the trailing-edge flap. The location ofthis element exposes it to aerodynamic loads, elevated temperatures, jet engine exhaust
impingement. boundary layer turbulence, and vortex shedding.

The object of this program is to design and fabricate a representative third flap element and
provide it to NASA for Ilight-simulated testing. The tests will allow an assessment of the flap
response to the flight environment.
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SYMBOLS

a panel length, mm (in.)

b panel width, mm (in.)

B bar width, mm (in.)

C distance from neutral axis to outer fiber, mm (in.)

D bar thickness, mm (in.)

ET Modulus of elasticity, tension, GPa, (psi)

EC Modulus of elasticity, compression, GPa (psi)

Fe stringer stress, MPa (psi)

Ftu allowable tensile ultimate stress, MPa (psi)

Fty allowable tensile yield stress, MPa (psi)

Fcy allowable compression yield stress, MPa (psi)

Fbru allowable bearing ultimate stress, MPa (psi)

G modulus of rigidity, GPa (psi)

1 moment of inertia, PM 4 (in. 4 )

J polar moment of inertia,p M4 (in. 4 )

K2  torsional shape constant

L bar length, mm (in.)

M bending moment, N-m (in.-lbf)

t panel thickness, mm (in.)
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AT temperature differential,OK (OF)

We effective skin width, mm (in.)

a coefficient of thermal expansion

6 deflection, mm (in.)

e expansion-contraction, mm (in.)

0 angular rotation, rad

DESIGN CONCEPT

The overall arrangement and shape of the third-element flap was provided by NASA. This
arrangement is shown in figure 1. The design loads and airfoil coordinates were also provided by
NASA. The basic design considerations were the simultaneous application of a 36-m/sec (70 kn)

airstream and exhaust impingement of a General Electric TF34 turbofan engine. The design life is to

be 1000 hr, an environment of 155 dB noise level (table 1) and temperatures to 4220 K (3000F)

(table 2). It was further specified that the end attachment sections have a bending stiffness of

approximately 3.18 mm/4.45 kN (0.125 in./1000 lbf) applied cantilever load and 3.29 rad/MN-m

(0.327 x 10-6 rad/in.-lbf) torsional stiffness. This was accomplished by introducing the flap-end

reaction loads into a solid aluminum bar 50.8 mm x 203 mm (2 in. x 8 in.), approximately 670 mm

(26.4 in.) long (table 3). These end attachment sections were designed but not fabricated. They will
be fabricated by NASA.

The end bars were designed with a nonstructural airfoil-shaped "boilerplate" shroud to
maintain airfoil continuity. Schematics of the arrangement are shown in figures 2, 3, and 4.

The entire flap, except for the attachment fitting, was constructed with 2024-T3 aluminum
alloy. This alloy was selected for the following reasons: (1) the flap was basically stiffness designed;
(2) the alloy retains 95% of its modulus at 4220K (3000F); (3) it retains a high percentage of its
tensile ultimate and compression yield after 1000 hr at (300 0 F); (4) it is a tough alloy with
favorable ductility, and (5) it withstands sonic environments better than alloys such as 7075-T6.
Material properties of 2024-T3 aluminum are listed in table 4.
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The skins were laminated from three layers of 0.64 mm (0.025 in.) 2024-T3 sheet. The
removable leading edge is a solid sheet aluminum 1.8 mm (0.071 in.).

The spars and ribs were built-up, riveted, formed aluminum, as were the leading-edge formers
and trailing-edge riblets. The end ribs were machined out of aluminum plate with a profile mill. A
simple aluminum sheet template was used for the airfoil profile.

The stringers are extruded aluminum. The basic structural concept is a conventional-type
skin-stringer construction. The flap element evolved as a two-spar box construction with all skin
effective in torsion and bending.

The laminated skins were autoclave bonded with Metlbond 329-7 adhesive. Manufacturer data
on this material indicates a 90% strength retention after aging 1000 hr at 4500 K (350*F).

All metal-to-metal contact surfaces were coated with Products Research and Chemical
Corporation PR 1750-A-4. This material is a polysulphide composition that is used as a faying
surface sealant. Boeing data indicates structures assembled this way are better in sonic environments
to the extent of about 1 dB.

The total gross mass of the completed part was 45.5 kg (96 lb). The net mass minus
instrumentation was 38.6 kg (85 lb).

The bottom skin of the flap element was instrumented with 22 axial strain gages and two
rosettes. Eight accelerometers were positioned inside the flap.

An analysis of the element was conducted to assess the structural adequacy of the part. The
aerodynamic loadings on the part were provided by NASA and result in the loads shown in figures
5, 6, and 7. Figures 8 to 11 show the physical properties of the flap element. Figures 12 and 13
show the Boeing design curves for sonic fatigue life that were used to check part details.

The fabrication sequence was straightforward. The skins were laminated and roll formed to
contour. The ribs and spars were assembled in a simple jig tool. The upper skin was riveted on and
the instrumented bottom skin was blind fastened with bulbed Cherrylock rivets. Lastly, the
removable leading edge was installed with bolts into nutplates. Figures 14 to 24 show the
subassembly and some details of the construction.
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ANALYSIS

The design loads were provided by NASA. The flap is supported at each end by pinned

connections and is therefore analyzed as a simply supported beam (tables 5 and 6). Various

members were checked for their sonic fatigue capability (table I). using Boeing-derived test data.

Boeing Commercial Airplane Company

P.O. Box 3707

Seattle, Washington 98124, December 14. 1973
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TABLE 1.-SONIC CHECK

GEOMETRY

Rib spacing, a = 10 in. Stringer spacing, b = 8 in. (maximum)

Skin gage, t = 0.075 in. Spar gage, t = 0.063 in.

CALCULATIONS

Skin:

b 8- - = 107
t 0.075

-= 1.25
b

then, from figures 12 and 13,

162 - 1.7 = 160.3 dB --

Spar:

b 4
.. . 64

t 0.063

a
-= 2.5
b

then, from figures 12 and 13,

163 - 4.7 = 158.3 dB -

Trailing-edge skin:

b 11
t 0.063

a-= 1
b

then, from figures 12 and 13,

156 - 0 156 dB

PRECEDTING PAGE BLANK NOT FILMED



TABLE 2.-THERMAL EXPANSION CAL CULA TION

Assume third-element flap is fixed in expansion-contraction length by steel support structure.

Also assume, as worst case, that third element reaches 3000F uniform temperature; support structure remains
at ambient 75*F. Then, maximum thermal expansion stress is

e = cATE

= (12x 10-6 )(300 - 75)(10.1 x 106)

= 27,300 Ibf/in. 2

Maximum bending stress is

ae = 7218 Ibf/in. 2

The total stress is then

27,300 + 7218 = 34,518 Ibf/in. 2 (237.97 MPa)

Since yield stress is 35,000 Ibf/in.2 (241.29 MPa), we have excessive thermal stress.

The expansion relief required to alleviate thermal stress is

E= xATL

= (12 x 10 6 )(225)(80)

= 0.216 in. (5.49 mm)

This relief is maximum due to conservative assumptions

NOTE: Calculations were performed in customary units
and answers converted to SI units.
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TABLE 3.-END FITTING STIFFNESS

Where desired end fitting stiffnesses are

Torsion: 8 = 0.372 x 10-6 rad/in.-lb

Bending: 6 = 0.125 in./1000 lb end load,

the length of a solid aluminum rectangle with assumed cross-sectional dimensions of 2 by 8 in. is
calculated from Strength of Materials by F. R. Shanley, McGraw-Hill Book Company, Inc., p. 509,
as follows:

K2 ML0-
BD3 G

where D/B = 0.25 and K2 = 3.6.

Then, substituting desired torsion,

0 = 0.372 x 10. 6 = (3.6)(1)(L)

(8)(2)3(4 x 106)

Solving for length,

L = 26.4 in. (670.6 mm)- length of a 2- by 8-in.
(50.8- by 203- mm)
aluminum bar required
for torsional stiffness

Checking bending deflection for this length

PL 3

3El

(1000)(26.4) 3

(3)(10.1 x 106) (8)(2)3
12

= 0.114 in. (2.9 mm) vs desired 0.125 in. (3.18 mm)

NOTE: Calculations were performed in customary units
and answers converted to SI units.
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TABLE 4.-MA TERIAL PROPER TIES *

2024-T3 aluminum aged 1000 hr at 4220 K (3000 F) and tested at 4220 K (3000 F)

Fts = 333.71 MPa (48,400 psi)

Fty = 279.24 MPa (40,500 psi)

Fcy = 241.32 MPa (35,000 psi)

Fbru = 558.48 MPa (81,000 psi)

Fbry = 434.37 MPa (63,000 psi)

Et  = 69.64 GPa (10.1 x 106 psi)

Ec = 71.02 GPa (10.3 x 106 psi)

G = 26.48 GPa (3.84 x 106 psi)

*Reference: Boeing Design Manual, D-5000, volume 84A2
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TABLE 5.-MAXIMUM BENDING STRESS IN SKINS

GEOMETRY

t t
135.7 kN (3050 Ibf) 137.9 kN (3100 Ibf)

FLAP ELEMENT PROPERTIES

Mmax = 75,465 in.-Ibf at station 117 (see fig. 7)

I = 23 in.4 (see fig. 10)

Cmax = 2.6 (tension side)

cmax = 2.2 (compression side)

CALCULATIONS

Mc

(75,465) (2.6)
23

= 8530 Ibf/in. 2 (58.81 MPa)(tension)

(75,465)(2.2)
23

= 7218 Ibf/in. 2 (49.77 MPa)(compression)

NOTE: Calculations were performed in customary units
and answers converted to SI units
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TABLE 6.-EFFECTIVE SKIN WIDTH AND STRINGER SPACING

GEOMETRY

t

SWe- * 0. 9"1 We

CALCULATIONS

W e = 0.85t Ee fc

Where f = stringer stress,* and assuming that maximum compressive stress equals stringer stress, then
(from table 5) fc = 7218 Ibf/in. 2 and

We = (0.85)(0.075) 1e 7218

= 2.41 in.

Total effective skin width = 2We + 0.9

= (2)(2.41) + 0.9

= 5.72 in. (145.3 mm)

For all skin to be effective,

Stringer spacing < 5.72 in. (145.3 mm)

Actual stringer spacing = 5 in. (127 mm)

Therefore, all skin between stringers is effective.

Note: Calculations were performed in customary units and
answers were converted to SI units.

*Reference Boeing Stress Manual, D6-22695, p. 11-11
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Leading edge
3.70 m (145.69 in.)

3.81 railing edge
381 (150. 9 in.)

1.326 rad

FIGURE 1.-DIMENSIONAL ENVELOPE



End fitting 2.108 m (83.0 in.) -

End fitting

Test part
Aluminum bar

Aluminum bar

FIGURE 2.-GEOMETRICAL CONCEPT
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FIGURE 3.-A TTA CHMENT SCHEMA TIC
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FIGURE 4.-SPANWISE A RRANGEMENT
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FIGURE 14.-COMPL ETED FLAP ASSEMBL Y
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FIGURE 15.-FLAP FINAL ASSEMBLY
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FIGURE 16.-FLAP SUBASSEMBL Y-LOWER SURFACE
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FIGURE 17.-FLAP SUBASSEMBL Y-TOP SURFACE



FIGURE 18.-FLAP SUBASSEMBLY AND INSTRUMENTED LOWER SKIN
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FIGURE 19.-INSTRUMENTATION LA YOUT
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FIGURE 20.-INSTRUMENTATION WIRE ROUTING THROUGH FORWARD SPAR
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FIG URE 21.-A CCEL EROMETER INSTAL LA TION
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F/G URE 22. -FLAP A TTACHMENT FITTING
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F/IGURE 23.- TYP/CAL INSPAR RIB ARRANGEMENT
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FIGURE 24.-TRAILING-EDGE RIBLET ATTACHED TO REAR SPAR AND TOP SKIN
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